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Abstract
A simple model is proposed for the liquid crystal matrix surrounding ‘soft’
colloidal particles whose separation is much smaller than their radii. We use
our implementation of the Onsager approximation of density-functional theory
(Chrzanowska et al 2001 J. Phys.: Condens. Matter 13 4715) to calculate the
structure of a nanometrically thin film of hard Gaussian overlap particles of
elongations κ = 3 and 5, confined between two solid walls. The penetrability
of either substrate can be tuned independently to yield symmetric or hybrid
alignment. Comparison with Monte Carlo simulations of the same system
(Cleaver and Teixeira 2001 Chem. Phys. Lett. 338 1, Barmes and Cleaver 2004
in preparation) reveals good agreement in the symmetric case.

1. Introduction

A nematic colloid, sometimes called an inverted nematic emulsion, is a dispersion of isotropic
particles, either rigid (grains) or deformable (e.g., water droplets), in a nematic liquid crystal
(LC) [1]. Because the nematic director is anchored on the surface of the (nearly always
quasi-spherical) inclusions, distortions of the director field are induced which in turn give
rise to effective interactions between the inclusions themselves. These can be manipulated
by treating the walls of the container, applying fields, or coating the surfaces of the colloidal
particles, in order to produce various states of aggregation, e.g., strings along the director
lines [2]. Nematic colloids are therefore ideal model systems to study topological defects,
and one important practical application appears to be the suspension of abrasive particles in
lyotropic mesophases. In a newer variant, inclusions of size exceeding the cholesteric pitch
(radius ∼1 µm) are dispersed in a well-aligned cholesteric sample. Here the colloidal particles
stabilize a network of defects by residing at its nodes, thereby transforming the cholesteric
liquid into a new type of material exhibiting gel-like rheological properties [3]. This study
was later extended to the simpler system consisting of smaller (radii 150–200 nm) particles in
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a nematic host: upon quenching the initial homogeneously-mixed colloid from the isotropic
(I) to the nematic (N) state, the particles were seen to phase-separate and aggregate into thin
walls, bounding domains of practically pure nematic LC [4]. The resulting metastable, but
relatively long-lived, cellular structure exhibited dramatically enhanced mechanical strength,
with an elastic modulus G ′ � 105 Pa and a well-defined yield stress, which are functions of
particle concentration.

In all the above, the colloidal particles are much larger than the LC molecules, which
can then be regarded as a continuum background. Effective interaction potentials between
colloidal particles have been derived, analytically in some limits, more generally numerically,
using either Frank theory (below the I–N transition) [2, 5] or Landau–de Gennes (LdG) theory
(above the I–N transition) [6]; more recent work considered van der Waals, steric, electrostatic
and LC-mediated contributions [7]. However, continuum-based approaches are expected to
fail when the interparticle separation becomes of the order of a few LC molecular sizes, as
in fully-formed aggregates. Furthermore, especially in the case of LdG theory, the solution
method is heavy, and affords little insight into the physics of the problem. Finally, evaluation
of the three- and more-particle contributions (these effective potentials being in general not
pairwise additive) becomes prohibitively complicated [6]: one would like to be able to obtain
the different terms as functions of the microscopic potential parameters, and in a systematic,
well-controlled manner.

The complexity of the task in hand requires that we start our attack from the very beginning:
take the simplest molecular model of a LC and squeeze it to nanometric thickness; then find
the free energy dependence on particle separation, and hence the effective interaction. Here
we carry out only the first part of this programme, leaving the second for future work. In a
previous paper [8] we showed how the simple Onsager approximation of density-functional
theory could provide a semi-quantitatively accurate description of the structure of a fluid of
hard rods confined between two hard, impenetrable walls, provided allowance was made,
in a phenomenological way, for the incorrect prediction of the location of the isotropic–
nematic (I–N) transition. In the present paper we apply the same strategy to symmetric films
confined between flat substrates of variable penetrability, in order to mimic different anchoring
conditions. This is not unreasonable as a first approach, in view of the large disparity of
the typical length scales of LC molecules—a few nanometres—and inclusions—hundreds of
nanometres (but see [9] for an attempt to consider curved hard surfaces).

This paper is organized as follows. In section 2 we recapitulate the theory of [8] and extend
it to the case of unequal anchorings at the confining walls. Then in section 3 we present results
for the density and order parameter profiles of LC films subject to symmetrical anchoring
conditions, and compare them with those obtained by Monte Carlo (MC) simulation [10, 11].
Finally, in section 4 we discuss the potential and limitations of our approach, and outline some
directions for future research.

2. Theory

As before, we take as a representation of uniaxial rod-like particles the hard Gaussian overlap
(HGO) potential used previously in 3d bulk simulations and Onsager theory of lyotropic LC
behaviour [12, 13] (i.e., where the LC phase transitions are driven by density, rather than
temperature, changes):

U12(r12, ω1, ω2) =
{

0 if r12 � σ(r̂12, ω1, ω2)

∞ if r12 < σ(r̂12, ω1, ω2),
(1)
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where ωi = (θi , φi ) are the polar and azimuthal angles describing the orientation of the long
axis of particle i , and r̂12 = r12/r12 is a unit vector along the line connecting the centres of the
two particles. The range parameter function is given by

σ(r̂12, ω1, ω2) = σ0

[
1 − 1

2
χ

{
(r̂12 · û1 + r̂12 · û2)

2

1 + χ(û1 · û2)
+

(r̂12 · û1 − r̂12 · û2)
2

1 − χ(û1 · û2)

}]−1/2

, (2)

where ûi = (cos φi sin θi , sin φi sin θi , cos θi) and χ = (κ2 − 1)/(κ2 + 1), κ being the particle
length to breadth ratio, σL/σ0. For moderate κ , the HGO model is a good approximation to the
hard ellipsoid (HE) contact function [14, 15]; furthermore, their virial coefficients (and thus
their equations of state, at least at low to moderate densities) are very similar [16]. However,
this is no longer true of highly non-spherical particles [17], for which the behaviour of the two
models differs appreciably [13]: here we restrict ourselves to κ = 3 and 5. Finally, HGOs
have the considerable computational advantage over HEs that σ(r̂12, ω1, ω2), the distance of
closest approach between two particles, is given in closed form.

Particle–substrate interactions have been modelled, as in [10, 11], by a hard needle–wall
potential:

Uwall(z, θ) =
{

0 if |z − z0| � L
2 cos θ

∞ if |z − z0| < L
2 cos θ ,

(3)

where the z-axis has been chosen to be perpendicular to the substrate, located at z0, and
0 � L � σL sets the length of the needle with which the substrate interacts. Here, L affords
us a degree of control over the anchoring properties: physically, 0 < L < σL corresponds to
a system where the molecules are able to embed their side groups, but not the whole length
of their cores, into the bounding walls. Varying L between 0 and σL is therefore equivalent
to changing the degree of penetrability of the substrates in an experimental situation, e.g., by
manipulating the density or the orientation of an adsorbed surface layer. This can be done
independently at either substrate, whereby symmetric or hybrid anchoring conditions can be
obtained.

The equilibrium density distribution of an HGO film is that which minimizes its grand-
canonical functional [18]:

β�[ρ(r, ω)] = βF[ρ(r, ω)] + β

∫ [
2∑

α=1

Uwall(θ, |z − zα
0 |) − µ

]
ρ(r, ω) dr dω

=
∫

ρ(r, ω)[log ρ(r, ω) − 1] dr dω

− 1
2

∫
ρ(r1, ω1) f12(r1, ω1, r2, ω2)ρ(r2, ω2) dr1 dω1 dr2 dω2

+ β

∫ [
2∑

α=1

Uwall(|z − zα
0 |, θ) − µ

]
ρ(r, ω) dr dω, (4)

where F[ρ(r, ω)] is the intrinsic Helmholtz free energy of the inhomogeneous fluid,
f12(r1, ω1, r2, ω2) = exp[−βU12(r1, ω1, r2, ω2)] − 1 is its Mayer function, µ is the chemical
potential, zα

0 (α = 1, 2) are the positions of the two substrates, and, because we are dealing
with hard-body interactions only, for which the temperature is an irrelevant variable, we can
set β = 1/kBT = 1 in all practical calculations (we retain it in the formulae for generality).
ρ(r, ω) is the density-orientation profile in the presence of the external potential Uwall(z, θ);
it is normalized to the total number of particles N ,∫

ρ(r, ω) dr dω = N, (5)
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and is related to the probability that a particle positioned at r has orientation between ω and
ω+dω. From equation (1) it follows that the interaction term in equation (4) is just the excluded
volume of two HGO particles, weighted by the density-orientation distributions ρ(r, ω). This
equation constitutes the Onsager approximation to the free energy of the confined HGO fluid.

Because the particle–substrate interaction, equation (3), only depends on z and θ , it is
reasonable to assume that there is no in-plane structure, so that all quantities are functions of
z only. Then equation (4) simplifies to

β� [ρ(z, ω)]

Sxy
=

∫
ρ(z, ω)

[
log ρ(z, ω) − 1

]
dz dω

− 1
2

∫
ρ(z1, ω1)�(z1, ω1, z2, ω2)ρ(z2, ω2) dz1 dω1 dz2 dω2

+ β

∫ [
2∑

α=1

Uwall(|z − zα
0 |, θ) − µ

]
ρ(z, ω) dz dω, (6)

where Sxy is the interfacial area. �(z1, ω1, z2, ω2) is now the area of a slice (cut parallel to the
bounding plates) of the excluded volume of two HGO particles of orientations ω1 and ω2 and
centres at z1 and z2 [19], for which an analytical expression has been derived [20]. Note that
each surface particle experiences an environment that has both polar and azimuthal anisotropy,
as a consequence of the excluded-volume interactions between the particles in addition to the
‘bare’ wall potential.

Minimization of the grand canonical functional, equation (6),

δ� [ρ(z, ω)]

δρ(z, ω)
= 0, (7)

yields the Euler–Lagrange equation for the density-orientation profile,

log ρ(z, ω) = βµ −
∫ ′

�(z, ω, z′, ω′)ρ(z′, ω′) dz ′ dω′, (8)

where the effect of the wall potentials, given by equation (3), has been incorporated through
restriction of the range of integration over θ :∫ ′

dω =
∫ 2π

0
dφ

∫ θm

π−θm

sin θ dθ =
∫ 2π

0
dφ

∫ cos θm

− cos θm

dx, (9)

with

cos θm =



1 if |z − z0| � L
2|z − z0|

L/2
if |z − z0| < L

2 ,
(10)

z0 being, we recall, the position of a substrate.
It is clear from the structure of equation (8) that µ is the Lagrange multiplier associated

with requiring that the mean number of particles in the system be N . We are therefore at liberty
to fix either µ or N (see also the discussion in [22]): as in earlier work we opt for the latter,
since it allows closer contact with (constant NV T ) simulation.

Once ρ(ω, z) has been found, we can integrate out the angular dependence to get the
density profile,

ρ(z) =
∫

ρ(z, ω) dω, (11)
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Table 1. Bulk I–N coexistence densities of HGOs from theory (th) [8] and simulation (sim) [13].

κ ρ
∗,th
I ρ

∗,th
N ρ

∗,sim
I ρ

∗,sim
N

3 0.830 100 0.864 356 0.2990 0.3046
5 0.210 731 0.234 746 0.1192 0.1275

and use this result to define the orientational distribution function (ODF) f̂ (z, ω) =
ρ(z, ω)/ρ(z), from which we can calculate the orientational order parameters in the laboratory-
fixed frame [23]:

η(z) = 〈P2(cos θ)〉 = Qzz, (12)

ε(z) = 〈sin 2θ sin φ〉 = 4
3 Qyz, (13)

ν(z) = 〈sin 2θ cos φ〉 = 4
3 Qxz , (14)

ς(z) = 〈sin2 θ cos 2φ〉 = 2
3 (Qxx − Qyy), (15)

τ (z) = 〈sin2 θ sin 2φ〉 = 4
3 Qxy, (16)

where 〈A〉 = ∫ A f̂ (z, ω) dω. These are the five independent components of the nematic order
parameter tensor, Qαβ = 〈 1

2 (3ω̂αω̂β − δαβ)〉: they give the fraction of molecules oriented
along the z-axis (Qzz); along the bisectors of the yz-, xz- and xy-quadrants (Qyz , Qxz and
Qxy , respectively); and the difference between the fractions of molecules oriented along the
x- and y-axes (Qxx − Qyy). In the case under study there is no twist, i.e., the director is
confined to a plane that we can take as the xz plane and ε(z) = τ (z) = 0. The three remaining
order parameters, η(z), ν(z) and ς(z), are in general all non-zero owing to surface-induced
biaxiality; see our earlier work for L = σL [8]. This effect has not been neglected in the
present treatment, but in what follows we show results for η(z) = Qzz only, as we wish to
concentrate on the planar-to-homeotropic transition.

3. Results

In earlier work [8] we found that the second-virial approximation does not give an accurate
prediction for the location or the width of the I–N transition of particles of moderate
elongation, as the contribution of higher virial coefficients is then substantial. Therefore it
does not make much sense to perform comparisons of theory and simulation at the same
density. To circumvent this difficulty we have, as in a previous paper, resorted to extending
a phenomenological scaling originally proposed by McDonald et al [24] in the context of the
I–N interface: comparison is instead effected between state points from theory and simulation
characterized by the same dbulk ≡ (ρbulk − ρI)/(ρN − ρI). Table 1 lists the I–N coexistence
densities we have used, obtained from the theory of [8], and from thermodynamic integration
of a 500-particle system [13]. The latter results are in reasonably good agreement with those
of two MC studies: the earlier constant-N pT simulation of a 256-particle system by Padilla
and Velasco [12], and the later constant-NV T/N pT simulations of a 1000-particle system by
two of us [11].

We emphasize that there is no fundamental reason why such a scaling should work, and
that a proper validation would require both a more sophisticated theoretical treatment (along
the lines of, e.g., [25] or [26]) and a more reliable location by MC of the I–N transition
of the confined HGO fluid, to allow for a possible shift relative to the bulk (‘capillary
nematization’) [11, 27, 28]. Still, we regard the procedure adopted as the best working tool for
comparison of these systems that is available at the moment. The unscaled densities at which
simulation runs and theory calculations have been performed are collected in table 2.
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Table 2. Scaled densities dbulk used in figures 1–4 for comparison of theory (th) and simulation
(sim) results: dbulk is positive (negative) in the bulk nematic (isotropic) phase. ρ∗,th and ρ∗,sim are
the unscaled densities at which the theoretical calculations and the simulations have been performed.

κ dbulk ρ∗,th ρ∗,sim

3 −3.392 852 98 0.713 874 491 0.28
3 7.321 422 42 1.080 902 51 0.34
5 −1.108 433 72 0.184 111 97 0.11
5 2.506 024 58 0.270 913 166 0.14

Equation (8) was solved iteratively for ρ(z, ω) by the Picard method, with an admixture
parameter of 0.9 (i.e., 90% of ‘old’ solution in each iteration), starting from a uniform
and isotropic profile. Following Chrzanowska [21], integrations were performed by Gauss–
Legendre quadrature, using 64 z-points (the minimum necessary to resolve the structure of
profiles at the higher densities considered) and 16×16 ω-points (for consistence with the bulk
calculation reported in [8]). Note that the range of ω′ depends on z′: the closer a particle is
to a substrate, the fewer orientations are accessible. In order to achieve good accuracy it is
nevertheless crucial to include the same number of points in the angular integrations for all
z′ [21]. Convergence was deemed to have been achieved when the error, defined as the sum
of the absolute values of differences between consecutive iterates at 64 × 16 × 16 = 16 384
points, was less than 10−1. The density and order parameter profiles were then calculated from
equations (11) and (12)–(16), respectively. Details of the simulations have been published
elsewhere [10, 11].

In figure 1 we plot d(z) and Qzz(z) profiles for a symmetrical film of HGO particles of
elongation κ = 5 and L∗ = L/σ0 = 3.0, which exhibits uniform planar alignment [10, 11].
Equilibrium density peak formation is captured reasonably well by theory, which however
underestimates the height of the peaks and the depth of the troughs, especially at the higher
density. For dbulk = −1.108 433 72, Qzz(z) is everywhere zero except in the surface layers
(the high-density peaks at |z − zα

0 | ∼ 0, α = 1, 2), by which we mean the regions where the
rotational freedom of a particle is restricted by the presence of the walls. Because the walls
are impenetrable to a ‘needle’ of length L (see equation (3)), the thickness of these layers
is ∼L/2 = 1.5σ0: in order to reside there a particle has to be parallel to the wall; hence
Qzz(z) < 0. We speculate that the Qzz(z) peaks at |z − zα

0 | ∼ L/2 are due to excluded volume
effects: particles are unable to minimize their free energy by retaining full rotational freedom,
and thus give rise to a zero order parameter, by the presence of the adsorbed surface layers
at |z − zα

0 | � L/2. It is then advantageous for them to align homeotropically so as to stick
their ends through the wall and thereby decrease the total excluded volume inside the system.
At the higher density dbulk = 2.506 024 58 there is again good agreement between theory and
simulation for Qzz(z), presumably because the degree of order is now quite large and close to
saturation.

Figure 2 shows the same quantities but for L∗ = 2.0, for which alignment is perpendicular
to the walls [10, 11]. The density peaks, the highest of which now occur at |z−zα

0| ∼ L/2 = σ0,
are even more pronounced than for L∗ = 3.0, and likewise underestimated by theory. In
particular, simulation appears to show the formation of some five layers, whereas theory bears
out only four. The Qzz(z) profiles from both theory and simulation are very similar to those
for L∗ = 3.0 at the lower density, but theory overestimates the degree of order at the higher
density.

Figures 3 and 4 illustrate planar and homeotropic alignment for the smaller elongation
κ = 3; now the Onsager approximation is expected to fare worse, and indeed it underestimates
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Figure 1. Scaled density d(z) (top) and order parameter Qzz (z) (bottom) profiles for a symmetrical
film of HGO particles of elongation κ = 5 and L∗ = 3.0 (L/σL = 0.6), for dbulk = −1.108 433 72
(solid curve and circles) and 2.506 024 58 (dashed curve and squares). Lines are from theory,
symbols are from simulation. At the higher density, which lies in the nematic region of the bulk
phase diagram, alignment is planar throughout the film, as shown by the fact that Qzz (z) < 0
everywhere. See the text and table 2 for details.

the structure of the density profiles d(z) rather severely: neither the heights nor the positions
of most peaks are predicted with even semi-quantitative accuracy. Still, the mean values of
Qzz(z) are reasonably faithfully reproduced, as well as the fact that the density peaks are farther
apart for homeotropic than for planar anchoring, as expected.

It is a nearly universal rule that the behaviour of Qzz(z) follows that of d(z), i.e., regions
of high density are also more highly ordered. The exceptions are the surface layers of
homeotropically-anchored films, where there are very few but very strongly aligned particles
(see figures 2 and 4).

In table 3 we present the approximate L/σL = L∗/κ at which there is a crossover from
homeotropic to planar ‘bulk’ alignment. Unsurprisingly, the agreement between theory and
simulation is better for the larger elongation, κ = 5. Insight can be gained into the anchoring
transition by noting that, in the limit of perfect orientational and positional order, the Helmholtz
free energy of this system is minimized by the arrangement that maximizes the particle volume
absorbed into the substrates. The homeotropic-to-planar transition is then given by equating
the ratio of the volume absorbed into the substrates to the area occupied by the particle on the
substrates (i.e., the projection of the particles onto the substrates) for the two key arrangements.
In the limit of perfect order, symmetry details of the packing can be ignored in this calculation
since they must be the same for both anchorings; the two arrangements will map onto each other
via suitable affine transformations. These two competing tendencies yield a crossover needle
length L/σL = L∗/κ ∼ 0.4817 for κ = 3 and L/σL = L∗/κ ∼ 0.6084 for κ = 5, which
is in line with our results: in particular, it is an increasing function of κ . Such quantitative
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Figure 2. The same as figure 1,
but for L∗ = 2.0 (L/σL = 0.4).
Now alignment at the higher density
is homeotropic throughout most of the
film, as can be seen from the fact that
Qzz(z) > 0 except in regions of width
∼L/2 = 1.25σ0 close to the walls.

Table 3. Film alignment crosses over from homeotropic to planar for L/σL = L∗/κ in each of the
intervals shown. The data are from theory (th) and simulation (sim) (this work), and the analytical
estimates of [11] (analyt).

κ (L/σL )th (L/σL)sim (L/σL )analyt

3 (0.55, 0.56) (0.45, 0.46) 0.4817
5 (0.56, 0.58) (0.50, 0.52) 0.6084

discrepancies as there are likely follow from having assumed (contrary to observation) that
there is close packing at the walls: as we saw above, theory in particular systematically
underestimates the contact densities; see [11] for details. As the bulk HGO fluid does not
exhibit any smectic phases,we do not expect the crossover L to depend on system size,provided
the latter is greater than twice the distance to which a single wall induces stratification.

Interestingly, on the homeotropic side just before (i.e., at L marginally below that of) the
crossover, the density profiles exhibit very pronounced peaks and troughs, which smooth out
dramatically once the system has gone planar; see figure 5. In particular, note the double-
peaked structure close to the walls at the larger L, which suggests that the interface layers
exhibit both planar and homeotropic features. As far as we can tell, the transition is fairly
abrupt, occurring in an interval of L∗ of width 0.1 (alternatively, in an interval of L/σL of width
0.02). Simulation results suggest [11] that there may be bistability close to the transition, i.e.,
both homeotropic and planar anchoring states are stable for the same L. We were able to get
the theory to converge to the ‘wrong’ anchoring (homeotropic for L∗ = 2.9, with higher free
energy than planar) by strongly biassing the initial guess: more work is needed to establish
whether this is real or an artefact of the numerical method.

Finally, attention is drawn to the fact that all comparisons in this section have been effected
at constant density and varying L. This is the natural thing to do, as N , the particle number,
and |z1

0 − z2
0|, the system size, are fixed in the MC simulations. Note, however, that because
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Figure 3. Scaled density d(z) (top) and order parameter Qzz (z) (bottom) profiles for a symmetrical
film of HGO particles of elongation κ = 3 and L∗ = 1.8 (L/σL = 0.6), for dbulk = −3.392 852 98
(solid curve and circles) and 7.321 422 42 (dashed curve and squares). Lines are from theory,
symbols are from simulation. At the higher density, which lies in the nematic region of the
bulk phase diagram, alignment is planar throughout the film, as in figure 1. Now the Onsager
approximation severely underestimates the degree of structure of d(z). See the text and table 2 for
details.

particles can partially penetrate the substrates, the volume accessible to them is a function
not just of |z1

0 − z2
0|, but also of L, the needle length: the smaller L, the deeper a particle

can sink, and thus effectively the larger the system. It then follows that the imposed total
density (which we referred to above as simply ‘the density’), found by dividing the number
of particles by the wall separation times the wall area, is not the actual or true density. It is
possible to estimate the system volume increase as a function of the type of anchoring and
ultimately of L, and thereby get the ‘true’ density [11]. Yet here we have elected not to do
this and used instead the imposed, ‘uncorrected’ density: though it may not be an absolutely
unambiguous descriptor in the microscopic sense, it is what is set in simulations and measured
in experiments. Furthermore, in order to keep the ‘true’ density constant we would require
knowledge of the actual system volume and therefore of what anchoring would come out of
a given calculation or simulation prior to running it—a not impossible, but rather unwieldy,
iterative task.

4. Conclusions

In this paper we have presented a density-functional treatment of an HGO fluid confined
between parallel walls of tunable penetrability. Despite its simplicity, the Onsager
approximation can in some cases yield semi-quantitative results for the density and orientational
distribution of particles of elongation as small as κ = 5 (but not κ = 3). This simple model for
the structure of the nematic matrix squeezed between tight-packed colloidal particles captures
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Figure 4. The same as figure 3,
but for L∗ = 1.2 (L/σL = 0.4).
Now alignment at the higher density
is homeotropic throughout most of the
film but planar in regions of width
∼L/2 = 0.6σ0 close to the walls, as
in figure 2.

effects missed by the more current Frank and LdG theories, namely to do with layering.
Moreover, the solution procedure also yields the free energy, thus making it possible to derive
the effective interaction between walls/particles. This will be the subject of future work.

When comparing theory and simulation, account has to be taken of the fact that they
yield rather different I–N transition densities and widths. This is due to our neglect of
correlations of order higher than second-virial, which are relevant in the range of densities
of interest. Greater predictive power would require a far more sophisticated approach, such
as a weighted-density [25] or fundamental-measure [26] approximation. The development
and implementation of such a scheme are, however, highly non-trivial. In keeping with our
aim of assessing the validity and usefulness of the Onsager approach, we instead adapted
a phenomenological scaling of the density first proposed by Allen and collaborators [24].
Agreement for symmetric films is fairly good, in spite of the smallness of κ , but its quality
is strongly dependent on the accuracy of the isotropic and nematic coexistence densities as
determined independently by either theory or simulation. We have not addressed the fact that
these are (sometimes dramatically) shifted from their bulk values by both confinement and
wall penetrability [11].

The theory can also be applied to hybrid films. It would be particularly interesting to see
whether it is able to describe

(i) the more common uniform and bent-director structures already predicted [29] and
observed [30];

(ii) the discontinuous transition between these two structures found by ourselves [10]; and
(iii) the more exotic biaxial structure in which two strata of film, each with a uniform director

orientation dictated by the nearest wall, are separated by a sharp interface [31].

Both (ii) and (iii) depend crucially on the anchoring strengths at the two substrates being large
and dissimilar or large and similar, respectively. However, preliminary calculations suggest
that our chosen mechanism of making the walls partially penetrable to particles produces
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Figure 5. Scaled density d(z) (top) and order parameter Qzz (z) (bottom) profiles for a symmetrical
film of HGO particles of elongation κ = 5 and reduced density dbulk = 2.506 024 58 on either side
of the crossover from homeotropic to planar anchoring. Theory: L∗ = 2.8 or L/σL = 0.56 (solid
curve), L∗ = 2.9 or L/σL = 0.58 (dashed curve). Simulation: L∗ = 2.5 or L/σL = 0.5 (circles),
L∗ = 2.6 or L/σL = 0.52 (squares). Note the high degree of layering when the homeotropically
aligned film is just about to go planar. See the text and table 3 for details.

much stronger homeotropic than parallel anchoring. This would need to be checked by a
direct calculation of the anchoring energy, similar to that performed in [22]. A more ambitious
aim would be to be able to shed some light on the observation by Vandenbrouck et al [32]
of spinodal dewetting of the nematogen 5CB spun-cast onto silicon wafers, where hybrid
anchoring was enforced by conflicting boundary conditions: orthogonal at the free surface,
and planar at the silicon substrate. Such behaviour was initially interpreted in terms of a
competition between elasticity and van der Waals forces [32], but subsequent arguments have
related it to the fluctuation-induced interactions that underlie the pseudo-Casimir effect [33].

The present theory can be straightforwardly generalized to more sophisticated surface
interactions, and also to mixtures of two or more types of hard body. One can envisage a very
rich behaviour of a confined binary mixture where the two components have different easy
axes at either substrate.
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